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Abstract Although the effects of linkage disequilibrium

(LD) on partition of genetic variance have received atten-

tion in quantitative genetics, there has been little discussion

on how this phenomenon affects attribution of variance to a

given locus. This paper reinforces the point that standard

metrics used for assessing the contribution of a locus to

variance can be misleading when there is linkage LD and

that factors such as distribution of effects and of allelic

frequencies over loci, or existence of frequency-dependent

effects, play a role as well. An apparently new metric is

proposed for measuring how much of the variability is

contributed by a locus when LD exists. Effects of inter-

vening factors, such as type and extent of LD, number of

loci, distribution of effects, and of allelic frequencies over

loci, as well as a model for generating frequency-dependent

effects, are illustrated via hypothetical simulation scenar-

ios. Implications on the interpretation of genome-wide

association studies (GWAS), as typically carried out in

human genetics, where single marker regression and the

assumption of a sole quantitative trait locus (QTL) are

common, are discussed. It is concluded that the standard

attributions to variance contributed by a single QTL from a

GWAS analysis may be misleading, conceptually and

statistically, when a trait is complex and affected by sets of

many genes in linkage disequilibrium. Yet another factor to

consider in the ‘‘missing heritability’’ saga?.

Introduction

Linkage disequilibrium has an impact on the variation of

quantitative traits. Early studies include those of Comstock

and Robinson (1952); Bulmer (1976), and Avery and Hill

(1979), among others. The question of how much a given

locus contributes to genetic variability of a trait has

resurfaced in the context of genome-wide association

studies (e.g., Weir 2008; Manolio et al. 2009; Powell et al.

2011) and in prediction of complex traits via whole-gen-

ome marker regression (e.g., Meuwissen et al. 2001; de los

Campos et al. 2010; Ober et al. 2012; Heslot et al. 2012).

When a single locus affects the trait, an answer to this

question can be found in quantitative genetics texts such as

Falconer and Mackay (1996). However, in a multi-factorial

situation, standard formulae apply provided that genotypes

at the loci affecting the target trait have mutually inde-

pendent distributions, a situation often referred to as one of

linkage equilibrium (LE). However, linkage disequilibrium

(LD) is the rule, rather than the exception (Hill and Rob-

ertson 1968; Sabbati and Risch 2002; Zhao et al. 2005).

For example, a significant marker-trait association is based

on the premise that this is a reflection of LD between a

marker and some unknown ‘‘causal’’ genomic region.

Levels of LD are much higher in plants and livestock than
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in humans, arguably due to small population sizes, cross-

ing, migration (admixture), and artificial selection keeping

alleles affecting the trait or fitness in favorable manners

coupled (e.g., Goddard and Hayes 2009), but also creating

negative linkage disequilibrium as well (Bulmer 1971).

The objective of this paper is to illustrate and reinforce

the point that the standard metrics frequently used for

assessing the contribution of a locus to variance are mis-

leading when there is LD. We also argue that factors such

as the distribution of effects and of allelic frequencies over

loci, or the existence of frequency-dependent effects, can

play a role as well and that all these factors need to be

considered for interpreting the attribution to variance. This

is done using theory and several stylized simulations. The

paper flows as follows. Section ‘‘Multi-locus setting’’

introduces notation and a metric proposed for measuring

how much of the variability is contributed by a locus.

Subsequently, intervening factors, such as type and extent

of LD, number of loci, distribution of effects and of allelic

frequencies over loci, as well as a model for generating

frequency-dependent effects, are discussed. The ‘‘Results’’

section reports several simulated scenarios used to provide

quantitative evidence of the extent of over (under) state-

ment of the importance of a locus when LD exists. The

paper concludes with a discussion of the implications of the

findings of this study on interpretation of genome-wide

association studies (GWAS), as typically carried out in

animal, human, and plant genetics.

Material and methods

Multi-locus setting

Using the notation of Falconer and Mackay (1996), con-

sider a bi-allelic locus model with genotypes AA, Aa and

aa, having effects a, d and -a on some quantitative trait

(or latent scale such as liability to disease), respectively.

Under Hardy-Weinberg equilibrium and with the allelic

frequencies being Pr Að Þ ¼ p and PrðaÞ ¼ 1� p ¼ q; the

variance generated by the locus (Falconer and Mackay

1996) is 2pq[a ? d(q - p)]2 ? (2pqd)2, reducing to 2pqa2

in the absence of dominance (d = 0). In the predecing

expression, a ? d(q - p) is the average effect of a gene

substitution, which is a without dominance. With K addi-

tive bi-allelic loci, the genetic value of subject i as

ui ¼ Wi1a1 þWi2a2 þ :::þWiKaK ð1Þ

where Wij is a random indicator variable denoting the

genotype of i at locus j, and aj is the fixed additive effect of

such locus, defined as the partial regression of ui on the

number of copies of allele Aj. This distinction is essential,

since in whole-genome prediction methods breeders

typically treat genotypes as fixed, but the effects aj as

random. As emphasized by Gianola et al. (2009) it is the

randomness of the W0s that underlies the concept of genetic

variance, producing the probability distribution

Wijaj ¼
�aj if Wij ¼�1ðaaÞ; Pr Wij ¼�1

� �
¼ 1� pj

� �2

0 if Wij ¼ 0ðAaÞ; Pr Wij ¼ 0
� �

¼ 2pj 1� pj

� �

aj if Wij ¼ 1ðAAÞ; Pr Wij ¼ 1
� �

¼ p2
j

8
><

>:

Hence, ui possesses a discrete distribution involving 3K

disjoint events, not all of which are observable in a finite

sample, especially, if K is large and some joint frequencies

are very small. If K ? ? and the loci are unlinked the

distribution of ui converges to a Gaussian, as in the

infinitesimal model of quantitative genetics (Fisher 1918;

Bulmer 1980). If the number of loci is finite, and these are in

linkage equilibrium (LE), the additive genetic variance is

VA ¼ Var uið Þ ¼
XK

k¼1

2pk 1� pkð Þa2
k ¼

XK

k¼1

Vk; ð2Þ

where Vk = 2pk(1 - pk) ak
2. The fractional contribution of

locus j to variance is unambiguous and given by

cj ¼
Vj

PK
k¼1 Vk

; j ¼ 1; 2; . . .;K: ð3Þ

If the loci are in LD, the variance decomposition is more

involved because the joint distribution of genotypes is no

longer trivial, due to the existence of covariances between

genotypes at different pairs of loci. In this case

Var uið Þ ¼ 2
XK

k¼1

pk 1� pkð Þa2
k

þ 2
XK

k¼1

XK

l¼kþ1

Cov Wik;Wilð Þakal

¼ 2
XK

k¼1

pk 1� pkð Þa2
k

þ 2
XK

k¼1

XK

l¼kþ1

qkl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pk 1� pkð Þpl 1� plð Þ

p
akal

¼ 2
XK

k¼1

pk 1� pkð Þa2
k þ 2

XK

k¼1

XK

l¼kþ1

2Dklakal: ð4Þ

Above, qkl is the correlation between genotype codes at

loci k and l and Dkl is the covariance from gametic

disequilibrium between these two loci (e.g., Lewontin

1988). Note that

qkl ¼
2Dklffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pk 1� pkð Þpl 1� plð Þ
p :

Formula (4) is well known and it appears, for example,

in Hill and Robertson (1966); Avery and Hill (1979) and
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Lynch and Walsh (1998). An important consequence of LD

is that the variability no longer breaks into K components

of variance, as opposed to (2). In a path analytic or network

contexts, any given locus would be connected to the

additive genetic value u via a direct effect and by indirect

effects mediated by all other loci with which the focal

locus is in LD. This begs the question: how much variance

is contributed by a locus, say, k, when LD is prevalent?

The problem of variance partitioning when the several

random factors that affect some response variable are cor-

related has received much attention in applied statistics,

particularly in the context of breaking down variance into

hereditary and environmental components for traits such as

intelligence tests in humans. Here, considerable debate has

focused around the possible existence of a correlation

between random genetic and environmental circumstances

that is very difficult to take into account in statistical analysis

(e.g., Emigh 1977; Goldberger 1977; Kempthorne 1978;

Lewontin et al. 1984). For example, Emigh (1977) discussed

the partitioning of sums of squares in non-orthogonal anal-

ysis of variance settings and suggested a term he called

‘‘commonality’’. For a 2-factor layout this was defined as

C(A, B) = R(A, B) - R(A) - R(B), denoting some ‘‘joint’’

contribution of the factors to a sum of squares; R(A, B) is the

sum of squares ‘‘due to’’ fitting A and B, and R(A) and

R(B) are the sums of squares ‘‘due to’’ fitting either A or

B only (Searle 1971). The counterpart of this in a random

effects treatment of the factors is clearly C(A, B) = rA?B
2 -

rA
2 - rB

2 = 2Cov(A, B). Emigh (1977) suggested that

r2
A þ CovðA;BÞ

r2
AþB

¼
r2

A þ
C A;Bð Þ

2

r2
AþB

might provide a sensible measure of the total fraction of

variance ‘‘due to’’ factor A. Kempthorne (1978) mentioned

this metric without discussion and criticized the use of the

term ‘‘due to’’, although his arguments were mostly

directed to fallacies in causal interpretation rather than to

the measure itself.

We adopt this framework here, regroup the covariances

resulting from LD and rearrange (4) in the following manner:

Var uð Þ ¼
XK

k¼1

Ck ð5Þ

where, for any j (j = 1, 2, ..., K)

Cj ¼ qj1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pj 1� pj

� �
p1 1� p1ð Þ

q
aja1

þ qj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pj 1� pj

� �
p2 1� p2ð Þ

q
aja2þ . . .þ 2pj 1� pj

� �
a2

j

þ . . .þ qjK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pj 1� pj

� �
pK 1� pKð Þ

q
ajaK ð6Þ

is the net contribution of locus j to additive genetic

variance; this follows from inspection of (4). Observe that

Cj ¼ Vj þ Dj where Dj is a disequilibrium term that can be

positive or negative, depending on the net effect of the

correlations between alleles at locus j with those at dif-

ferent loci and of the additive genetic effects. Further,

while C1 ? C2 ? ... ? CK must be positive (because this

sum is a variance), any of the Cj can take negative values.

Also, observe that if alleles are fixed at locus j (pj = 0 or

1), Cj = 0 irrespective of the existence of polymorphisms

at other loci, as one would expect.

Letting the variance under LE be

VarEQ uð Þ ¼
XK

k¼1

Vk; ð7Þ

one can define the disequilibrium measure

Ddiseq¼VarðuÞ�VarEQ uð Þ¼
XK

k¼1

Ck�Vkð Þ¼
XK

k¼1

Dk: ð8Þ

The sign of Ddiseq depends on whether the net contribution

of LD to variance is negative or positive, respectively.

Also,

Ddiseq

VarðuÞ ¼ 1� VarEQ uð Þ
Var uð Þ ; ð9Þ

expresses the relative contribution of disequilibrium to

variance: if LD increases variance relative to the

equilibrium situation, this measure is positive; otherwise,

it is negative. Further,

keq; j ¼
Vj

VarðuÞ ; j ¼ 1; 2; . . .;K ð10Þ

and

kdis;j ¼
Cj

VarðuÞ ¼
Vj þ Dj

VarðuÞ ; j ¼ 1; 2; . . .;K; ð11Þ

represent the frational contribution of a locus to variance

assuming equilibrium or taking disequilibrium into account

in the sense of (6).

As a simple illustration consider a 3-locus model with

same allelic frequency p and additive effect a at each locus.

Then (4) is

Var uið Þ ¼ 2p 1� pð Þa2 3þ q12 þ q13 þ q23ð Þ
¼ 6p 1� pð Þa2 1þ qð Þ;

where q is the average of the three possible correlations.

Here, VarEQ(u) = 6p(1 - p) a2 and Ddiseq = 6p(1 - p)

a2q. Further

V1 ¼ 2p 1� pð Þa2;

C1 ¼ 2þ q12 þ q13½ �p 1� pð Þa2;

keq;1 ¼
1

3 1þ qð Þ ;
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and

kdis;1 ¼
2þ q12 þ q13

6 1þ qð Þ :

If q12 ? q13 is replaced by 2q (for illustrative purposes), then

kdis,1 = 0.33, and each locus is assessed with an equal relative

contribution to variance, whereas keq,1 understates the con-

tribution of the locus to variability if disequilibrium is posi-

tive, but makes an overstatement if disequilibrium is negative.

Clearly Cj provides a more appealing metric than Vj.

A matrix representation as in Gianola et al. (2009) is

more compact. The genetic value (1) can be written as

ui = wi

0
a, where a = {aj} is a K 9 1 column vector con-

taining the additive genetic effects of each of the loci, and

wi

0
is a random row vector containing the genotype indi-

cator variables Wij. It follows that

Var uið Þ ¼ a0Ma; ð12Þ

where M = Cov(wi, wi

0
) is a positive-definite matrix of

order K 9 K having diagonal elements 2pj(1 - pj) and off-

diagonals qjl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pj 1� pj

� �
pl 1� plð Þ

q
: If there is complete

pair-wise LE all correlations are null and (12) returns the

equilibrium variance

VarEQ uð Þ ¼ a0Ea;

where E = Diag{2pj(1 - pj)}. Then

Ddiseq ¼ a0 M� Eð Þa

where M 2 E has null diagonal elements. From (6) it can

be noted that Cj = ajmj

0
a, where mj

0
is the jth row of matrix

M; also, observe that

M ¼ 2PRP; ð13Þ

where P ¼ Diag
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pj 1� pj

� �qn o
and R is a K 9 K corre-

lation matrix with off-diagonal elements rkl ¼ qkl

2
; and this

is the correlation between alleles at the two loci in ques-

tion, as in standard LD analysis (Hill and Robertson 1968;

Hedrick 1987; Lewontin 1988).

Clearly, the additive genetic variance is defined only if

M is positive-definite and there is a huge number of

combinations of mutation, selection, migration, and drift

scenarios that can be thought of as candidates for produc-

ing a certain covariance structure. A different matter is that

of estimating M from real data. For example, if R is an LD

correlation matrix to be estimated from whole-genome

allelic frequencies, standard pairwise methods are bound to

produce estimates that will not yield a positive-definite

R, producing an invalid estimate of M. Unless care is

exercised, taking a naı̈ve estimate of R could result in an

invalid statement of genetic variance with absurd attribu-

tions of contributions of individual loci to variance. This

point will be retaken later on.

Factors affecting the contribution of a locus to variance

Linkage disequilibrium and number of loci. Expression (6)

indicates that, apart from the number of loci, Cj depends on

the a effects at all K loci (if most of the effects are either

negative or positive, more variance due to disequilibrium

would be expected than when their distribution is sym-

metric), on the distribution of allelic frequencies over loci

and on the extent of LD as conveyed by the off-diagonals

of M. It is awkward to address the influences of all these

factors analytically, but simple simulations serve to provide

an idea of the extent to which LD affects the standard

measure of an individual locus contribution to variance

(Vj) , as well as to compare this with the metric Cj, which

we argue provides a more sensible measure.

While conjectures about the ‘‘genetic architecture’’ of

quantitative traits are abundant (e.g., Daetwyler at al. 2010),

it does not seem unfair to state that the number, effects,

mode of gene action, and joint distributions of genotypes or

alleles at QTL affecting complex traits remains largely

unknown, in spite of a deluge of genomic data. The same

holds for evolutionary processes. Hence, simulating genetic

systems requires strong and largely untested assumptions

about the state of nature and about causation. Any hypo-

thetical evolutionary or breeding scenario will lead to a

valid LD structure, but what is the strength of the evidence

favoring one scenario over another? At present, this cannot

be answered, at least for ‘‘complex’’ traits. For this reason,

a purely statistical approach to the study of factors affecting

the attribution of variance to a locus is taken here. That is,

we examine processes leading to certain net results without

arguing from a mechanistic perspective in defense of the

statistical setting chosen.

A main difficulty is that of simulating LD settings leading

to a positive-definite matrix M. This is essential, as inducing

pairwise correlations in a naive manner without ensuring

positive-definiteness can produce absurd results, such as a

negative genetic variance. This a well-known problem in

multivariate analysis of quantitative traits, e.g., Hayes and

Hill (1981). Actually, standard estimates of pairwise dis-

equilibrium via the r2 and D0 measures, typically reported as

‘‘heat maps’’ (e.g., Goddard and Hayes 2009; Wu et al.

2011), will rarely lead to a ‘‘proper’’ matrix M.

We examined three scenarios of linkage disequilibrium.

In the first one LD was entirely random and this was

attained by simulating random correlation matrices

(Marsaglia and Olkin 1984) using function rcorr in pack-

age ggm of the R software (Marchetti and Drton 2010).

Briefly, if zi* N(0, I) is a vector containing K independent

N(0, 1) variables, then draw K such vectors and form the K2

matrix Z, whose ith column is ziffiffiffiffiffi
z0izi

p : It follows that using

R = ZZ0 in (13) yields a matrix whose diagonal elements

1460 Theor Appl Genet (2013) 126:1457–1472
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are all equal to 1, and its off-diagonals are between -1 and

1. Subsequent to obtaining the correlation matrices,

eigenvalues were calculated as a check for positive-defi-

niteness; this was verified in every single instance.

The second scenario aimed to produce positive LD, and

the strength eventually attained depended on the number of

loci (K) affecting the genetic value and on the value of a

single correlation coefficient q. A challenge was to ensure

that the simulated R? was positive definite, and this is a

function of the correlation structure, of the strength of the

correlation and of K. As an example, consider a situation

with K = 8 loci and where R? has the banded form (e.g.,

mimicking LD involving 4 ‘‘successive’’ loci, in the sense

of physical position in a chromosome)

Rþ ¼

1 q q q 0 0 0 0

q 1 q q q 0 0 0

q q 1 q q q 0 0

q q q 1 q q q 0

0 q q q 1 q q q
0 0 q q q 1 q q
0 0 0 q q q 1 q
0 0 0 0 q q q 1

2

66666666664

3

77777777775

: ð14Þ

Here

Rþj j ¼ 4q8 � 32q7 þ 91q6 � 104q5 þ 25q4 þ 32q3

� 18q2 þ 1

and, as shown in Fig. 1 (left panel), not all values of q
produce a positive determinant. Even when this condition

is satisfied, a q that yields a positive determinant does not

ensure positive eigenvalues. For instance, q = 0.5

produces a valid LD as both the determinant and the 8

eigenvalues are all positive. Further, within the 28 off-

diagonal elements of R?, there are 18 that are not 0,

giving an average correlation of 18
28

q; at q = 0.5 this

average is about 0.32. With K = 12, a similar lag-4

banded structure produces a determinant that is non-

negative only when the correlation is either weak, or

strongly negative (Fig. 1, right panel); at q = 0.3, the

determinant is 1. 22 9 10-3 and R? has 30 non-zero

elements, so the average correlation is 30
66

q; with q = 0.3,

the average correlation is only 0.14. This illustrates that,

as K increases, this banded correlation structure yields a

weaker simulated LD because the proportion of 00s in the

off-diagonals grows, yet attaining positive-definiteness.

Hence, the lag-4 banded structure produces strong positive

LD in models with just a few loci, but not when K is large.

In short, given K, the positive-definiteness of R? depends

on q and, conversely, at a given q, positive definiteness

depends on K. In our simulations we used combinations of

K and q at varying lags, found by trial and error. Once

positive definiteness of R? was attained, slight additional

random disequilibrium was introduced at times by taking

as correlation matrix

R ¼ 1� að ÞRþ þ aZZ0; ð15Þ

where ZZ0 is a random correlation matrix generated as

described earlier and 0 B a B 1, with a typically below 0.05

in the trials. Since a weighted average (with positive weights)

of two positive-definite matrices is also positive definite, this

provided a proper R for the purpose of this study.

The same approach was followed for negative disequi-

librium. Here, the correlation matrix was formed with

a = 0.01 so that

R ¼ 0:99� R� þ 0:01� ZZ0 ð16Þ

where R- was a banded matrix similar to (14), employing

values of q leading to a positive-definite R-. For example,

with K = 8 a choice of q = -0.20 meets the requirements

for R-; here, there are 18 non-zero off-diagonals (out of 36)

in either the upper or lower triangles of R-, producing an

average correlation 18
28
� ð�0:20Þ ¼ �0:13:

Distribution of allelic frequencies and of genetic effects

over loci. Since additive genetic variance depends on

allelic frequencies, instead of setting arbitrary values of

p these were drawn from either uniform U(0,1) or beta,

Beta(c1, c2), distributions. The latter were J - shaped

(c1 = 1, c2 = 0.2), L-shaped (c1 = 0.2,c2 = 1) or inverted

U-shaped (c1 = c2 = 2).

As noted, the additive effects a are not random variables

in the standard quantitative genetics setting (Falconer and

Mackay 1996); however, their values were simulated by

effecting K draws from either a normal distribution with

arbitrarily chosen mean and variance r2, or from a double

exponential (DE) distribution with the same mean and

parameter k; elicited by setting the variance of this distri-

bution, 2k2, equal to r2 so that k ¼
ffiffiffiffi
r2

2

q
:

We also examined a situation where the additive effect a

depended on the allelic frequency at the locus. Studies on

relationships between effects of quantitative trait loci and

their frequencies using real data are lacking. One could

either adopt a stylized model (e.g., Zhang et al. 2002) that

leads to tractable mathematics but without being neces-

sarily relevant to the underlying complexity of the trait(s)

in question or adopt a model that does not favor any theory

in particular. We adopted the second viewpoint and built an

arbitrary relationship where the additive effect at locus j

was generated using the function

aj pj

� �
¼ wjðpjÞ þ

1

2
v1;j þ

1

2
v2;j ð17Þ

where v1,j* N(l1, r2) and v2,j* N(l2, r2) are two inde-

pendent normally distributed deviates. Above, wjðpjÞ ¼
4þ 4pj þ sinð15pjÞ þ cosð15pjÞ is a frequency-dependent
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sinusoidal ‘‘wave’’, and the sum of the two normal deviates

produces a residual (‘‘away from the wave’’) having as

distribution a 50–50 mixture of normals. Adopting a pro-

cess that does not favor any specific pet theory about the

state of nature (especially if this is far from being firmly

established) is common in statistical practice. For example,

Newton et al. (2001) used this approach when evaluating a

suite of estimators of differential gene expression.

The wave wj(pj) is illustrated in the left panels of Fig. 2;

the figure used 2,000 draws from a uniform U(0, 1) dis-

tribution of frequencies (top panel), or from a Beta(2, 2)

distribution (inverted U-shaped) in the bottom panel. The

corresponding genetic values are in the right panels: sinu-

soidal genetic values are seen more clearly when allelic

frequencies are distributed uniformly over the 2,000 loci.

The density of the distribution of allelic substitution effects

is

f að Þ ¼
Z

gðajpÞhðpÞdp; ð18Þ

where g(a|p) is the density of the conditional distribution of

the genetic values given the allelic frequency, and h(p) is

the density of the allelic frequency distribution. Given the

allelic frequencies, the only random term in (17) is 1
2

v1;j þ
1
2

v2;j: Thus, g(a|pj) is a mixture of normals, with expected

value

E aj pj

� �
jpj

� �
¼ l1 þ l2

2
þ wjðpjÞ;

and variance r2

2
: Moments or the density f(a) cannot be

written in closed form and, to illustrate, this density was

estimated non-parametrically assuming l1 = 4, l2 = -4

and U(0, 1) or Beta(2, 2) as allelic frequency distributions.

For this purpose, 20,000 draws were obtained from these

distributions, with (17) evaluated to produce samples from

the marginal distribution of genetic values a. The distri-

butions were bimodal and the distribution of allelic fre-

quencies did not make a difference (results not shown).

Results

Many arbitrarily chosen settings were investigated; salient

ones serving purposes of the study are reported.

3-locus model

The model had 3 loci and positive linkage disequilibrium

inducing the correlation matrix

Rþ ¼
1 0:8 0:6

0:8 1 0:8
0:6 0:8 1

2

4

3

5

This matrix is positive-definite. Assuming that the three

loci had allelic frequencies 0:5; 0:5þ D and 0:5þ 2D;
where �0:25\D\0:25; and the same additive effect

a, one can write using (5) Var(u) = C1 ? C2 ? C3, where

C1 ¼ 2� 0:52 þ 0:8� 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25� D2
� �q�

þ 0:6� 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25� 4D2
� �q �

a2;

C2 ¼ 0:8� 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25� D2
� �q

þ 2 0:25� D2
� ��

þ 0:8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25� D2
� �

0:25� 4D2
� �q �

a2;

and

C3 ¼ 0:6� 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25� 4D2
� �q�

þ 0:8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25� 4Dð Þ2 0:25�D2

� �q
þ 2 0:25� 4D2
� ��

a2:

Likewise,

V1 ¼ 2� 0:52a2; V2 ¼ 2 0:25� D2
� �

a2; V3

¼ 2 0:25� 4D2
� �

a2:

2
|R|

30

|R|

-0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1.0

1

rho

20

-1

rho

-0.6 -0.4 -0.2 0.2

10

rho-2 rho

Fig. 1 Determinant of a

correlation matrix with a lag-4

banded structure as a function of

(rho), the coefficient of

correlation and K the number of

loci. K = 8 (left panel).
K = 12. (right panel)
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Then

keq;j ¼
Vj

C1 þ C2 þ C3

; j ¼ 1; 2; 3;

and

kdis;j ¼
Cj

C1 þ C2 þ C3

; j ¼ 1; 2; 3:

The relative contributions keq,j and kdis,j of the three loci

to variance were plotted against D; as shown in Fig. 3 (left

panel). The picture was clear: because LD was positive and

strong, the standard formula based on Vj produced a severe

understatement of the contribution of any of the three loci to

genetic variability. For example, in the case of locus 3, its

maximum contribution, as deemed by Vj, is attained when

D ¼ 0 p ¼ 0:5ð Þ; at nearly 20 % of the variance (dotted

green line). However, this locus makes a contribution of at

most 30–31 % of the total genetic variance at frequencies

near p = 0.35 when indirect contributions stemming from

LD (as conveyed by Cj) are taken into account. Importantly,

note that while equilibrium formulae suggest that locus 1 is

the most important contributor to variance at most allelic

frequencies (dotted black line), this is not so when both

direct and indirect effects of a locus are brought into the

picture. For example, the relative importance of loci 1 and 2

crisscross and locus 2 (solid red line) is the main contributor

to variance at intermediate frequencies, but no so at other

values of p.

Consider a negative disequilibrium case, with correla-

tion structure

R ¼
1 �0:7 �0:3
�0:7 1 �0:2
�0:3 �0:2 1

2

4

3

5;

with the three loci having the same additive effect. The

eigenvalues are {1.708, 1.140, 0.152} and V1,V2 and V3 are

as before. Now

C1 ¼ 2� 0:52 � 0:7� 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25� D2
� �q�

� 0:3� 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25� 4D2
� �q �

a2;

C2 ¼ �0:7� 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25� D2
� �q

þ 2 0:25� D2
� �

�

� 0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25� D2
� �

0:25� 4D2
� �q �

a2;

and

C3 ¼ �0:3� 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25� 4D2
� �q�

� 0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25� 4Dð Þ2 0:25�D2

� �q
þ 2 0:25� 4D2
� ��

a2:

Figure 3 (right panel) depicts the relative importance of

these three loci in terms of contribution to variance. The

equilibrium formulae now overstate the relative importance

of loci 1 and 3, but slightly understate the contribution of

locus 2 to variance. In this setting, negative disequilibrium

results in negative contributions of locus 3 to variance at

allelic frequencies that are approximately larger than 0.72
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Fig. 2 Sinusoidal wave (2,000

points in the plot) used in

creating frequency-dependent

genetic effects for two

distributions of allelic

frequencies: U(0, 1) in the top
left panel and Beta(2, 2) in the

bottom left panel.
Corresponding genetic values

are in the right-side panels

Theor Appl Genet (2013) 126:1457–1472 1463

123



or smaller than about 0.28. The effect of negative dis-

equilibrium on total variance results in a re-ranking of loci.

Several loci

The setting reported had K = 12 loci and random, positive

or negative LD, with | q | = 0.40. Since only a few loci are

involved, the forms of the distribution of additive genetic

effects and of frequencies over loci are unimportant.

However, the proportion of loci with either positive or

negative a effects does matter. For instance, if 50 % of

these effects are positive and 50 % are negative, there is

little build up of disequilibrium variance, as they cancel

with each other. On the other hand, if most of the effects

are either positive or negative, the relative contribution of

Ddiseq becomes patent. Here, we drew a effects from the

normal distribution N(2, 92) , where about 59 % of the

values are expected to be positive.

The R? and R- matrices used in the positive and neg-

ative LD settings, respectively, had a lag-6 type of struc-

ture, e.g., R?[1, 6] = 0.40 and R?[1, 7] = 0, with R-[1,

2] = -0.40 and R-[1, 10] = 0; these are positive-definite

matrices. These matrices were blended with a random

correlation matrix, as indicated in (15) and (16).

The random LD setting produced Var(u) = 59.19,

VarEQ(u) = 62.81 and Ddiseq = 59.19 - 62.81 = -3.62

so that some mild random negative disequilibrium was

created, with
Ddiseq

Var uð Þ ¼ �0:06: When LD was positive,

Var(u) = 86.77, VarEQ(u) = 62.81 as before, and Ddiseq =

23.96, with
Ddiseq

Var uð Þ ¼ 0:28: For negative LD, Var(u) =

58.69, VarEQ(u) = 62.81 and Ddiseq = -4.12, with this

parameter equivalent to -7 % of the variance. Estimates of

the slopes of the regression of kdis,j on keq,j were calculated.

With positive LD, the standard formula for the relative

contribution of a locus to variance understated the actual

contribution (in the sense used in this paper) by about 14 %

(b = 1.16), as measured by the slope of the regression;

when LD was negative, there was no overstatement

observed because the simulation did not generate sizable

disequilibrium variance. Since LD levels in animals and

plants subject to selection are typically stronger than those

examined here, these results probably represent lower

bounds for the relative understatement or overstatement of

the contribution of a locus to variance, provided that the

distribution of effects is not symmetric.

Many loci: frequency-independent effects

We report on a setting with K = 80 loci and with combi-

nations of distributions of allelic frequencies (uniform or

beta), additive effects (normal or double exponential) and

type of LD (random, positive or negative). We used either a

N(3, 92) distribution of additive effects, yielding about

63 % positive realizations, or a double exponential process

with mean 3 and parameter k ¼
ffiffi
9
2

q
; producing a variance

equal to 9. In the latter case, about 90 % of the realizations

were expected to be positive.

For positive LD, a correlation of 0.23 between pairs of

‘‘contiguous’’ loci with a lag of 8 in the banded correlation

structure yielded a positive-definite R?; because the aver-

age of its off-diagonal elements was only 0.039, thus

resulting in weak overall LD, this matrix was used in lieu of

R (a = 0). Otherwise, the disequilibrium contribution to

variance would have been essentially zero. For negative

LD, it was found that a lag-4 correlation of -0.16 produced

a positive-definite R-, translating into an overall average

correlation of -0.01; R- was used instead of R as well.

Although these two settings produced little disequilibrium

variance (see Table 1), they can be construed as providing a

lower bound for the effects of LD on variance partitioning.

0.4
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Fraction of variance
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D

Fig. 3 Relative contribution to variance of three loci under positive (left panel) or negative (right panel) LD; dotted lines give the contributions

as deemed by equilibrium formulae. Locus 1 black, Locus 2 red, Locus 3 green. D departure of allelic frequency from 0.5 (color figure online)
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As shown in Table 1, for random LD the contribution of

Ddiseq to variance ranged from -1.6 to 4.1 %; when it was

positive, this parameter accounted for 12 to 28 % of the

variability, and the disequilibrium parameter was relatively

larger for the DE than for the normal distribution because

of a larger proportion of positive realizations. With nega-

tive LD, parameter Ddiseq represented from about -15 to

-4.5 % of the variability; again the disequilibrium con-

tribution was stronger for the DE distribution of effects.

Overall, the uniform and the inverted-U distributions of

allelic frequencies tended to produce stronger disequilib-

rium than the other two beta distributions, this being due to

the fact that frequencies near 0.5 are more rare under the

J- and L-shaped beta processes.

Plots of (11) versus (10), as percentages, when the

distribution of effects was normal or DE were made both

for positive and negative LD. Plots for the double expo-

nential distribution are in Fig. 4 and 5 for positive and

negative LD, respectively. The slopes of the regression of

(11) on (10) were calculated for each case. When LD was

positive, the contribution of a locus to variability was

understated (the slope ‘‘b’’ ranged between 1.08 and

1.23), and more markedly so when allelic frequencies

were uniform or inverted U, because these settings pro-

duced stronger LD. When LD was negative, the equilib-

rium expressions overstated the ‘‘importance’’ of a locus,

with b ranging from 0.91 to 0.99. As expected, when LD

was random scatterplots (not shown) did not reveal

departures from the 45� angle line, although the slopes

were slightly below 1 and slightly larger than 1 for the

DE situation; the effect of the distribution of allelic fre-

quencies on the slopes was nil.

Many loci: frequency-dependent effects

The setting had K = 80 loci, the same disequilibrium

structure as in the preceding section, a uniform distribution

of allelic frequencies and additive genetic effects were

generated as in (17) with v1,j * N(-1, 2.252) and v2,j *
N(2, 2.252). For the DE

aj pj

� �
¼ 4þ 4pj þ sinð15pjÞ þ cosð15pjÞ þ

1

2
v0i;j þ

1

2
v02;j;

ð19Þ

where v1,j

0
* DE(-1, 2.252) and v2,j

0
* DE(2, 2.252), so

that k ¼ 2:25
ffiffi
1
2

q
: Results are shown in Fig. 6, with similar

qualitative results as for the frequency-independent situa-

tion: ignoring positive (negative) LD results in an under-

statement (overstatement) of the contribution of an

individual locus to variability. Results obtained when using

either J or L-shaped distribution of allelic frequencies led

to the same conclusions, but with milder effects of LD on

attribution of variance to a locus.

Discussion

Our study discussed factors affecting the partition of

additive variance for a quantitative trait into locus-specific

Table 1 Additive genetic variance, Var(u); equilibrium additive

variance, VarEQ(u), and relative contribution of disequilibrium,

Ddiseq, to genetic variance at random (R), positive (? ) and negative

(-) disequilibrium under normal N(3, 92) or double exponential (DE)

distribution of effects; the latter with mean 3 and variance 9

Effects¼) N N N DE DE DE

Frequencies + Disequilibrium¼) R ? - R ? -

Uniform Var (u) 307 385 277 455 616 385

VarEQ(u) 305 305 305 442 442 442

100
Ddiseq

VarðuÞ
0.19 20.9 -10.2 2.9 28.2 -14.8

Inverted U Var (u) 358 460 332 521 700 438

Var EQ(u) 364 364 364 503 503 503

100
Ddiseq

VarðuÞ
-1.6 20.9 -9.5 3.3 28.1 -15.0

J Var (u) 132 154 127 167 210 158

Var EQ(u) 135 135 135 170 170 170

100
Ddiseq

VarðuÞ
-2.7 12.0 -6.28 -1.4 19.1 -11.2

L Var (u) 158 180 149 194 231 171

Var EQ(u) 155 155 155 186 186 186

100
Ddiseq

VarðuÞ
1.8 13.5 -4.5 4.1 19.8 -8.6

The number of loci is 80 and allelic frequency distributions are uniform, U(0, 1); inverted U-shaped, Beta(2, 2); J = shaped, Beta(1, 0.20), and

L-shaped, Beta(0.20, 1)
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components, when linkage disequilibrium exists. Factors

included the extent and type (random, positive or negative)

of LD, the distribution of allelic frequencies (e.g., J-shaped

or L-shaped) and the distribution of additive effects over

loci. As one would expect, the attribution of variance to a

given locus is overstated by the usual equilibrium formula

when LD is predominantly negative, and understated when

LD is positive. Linkage disequilibrium was created ran-

domly or by producing banded correlation structures over

pairs of contiguous loci. The settings were arbitrary and

used primarily to provide a proof of concept, as opposed to

proposing structural models for the analysis of correlation

matrices stemming from gametic disequilibrium. An

alternative would have been to simulate some evolutionary

or selective process leading to a predictable LD structure.

A difficulty is that there is a huge number of possible

scenarios reflecting population size, drift, selection, muta-

tion and demographic structure, and any choice of setting

would have been no less arbitrary than the approach fol-

lowed here. A related issue is the technical difficulty of

retrieveing a positive-definite estimate of R from highly

dimensional genomic data. In a nutshell, the point of this

paper was to llustrate the effects of net negative or positive

disequilibrium on variance attribution, without reference to

why such structure arose.

There may be finer ways of studying the effect of LD on

genetic variability. Here, we created LD statistically via the

positive-definite matrix R (R? or R-, depending on whether

LD was positive or negative). For example, LD can be mod-

eled in terms of some latent variable that is linear on effects

after suitable transformation, e.g., as inTurelli and Barton

(1990); Hospital (1992) and Barton (2000). In a randomly

picked gamete the latent variable could be expressed as

lij ¼ lþ ci þ A
½p�
ij þ A

½m�
ij ;

li0j0 ¼ lþ ci
0 þ B

½p�
i
0
j
0 þ B

½m�
i
0
j
0 ;

where ci is a random effect due to chromosome i and Aij
[p],

and Aij
[m] represent effects due to paternal (p) and maternal

(m) origin of alleles at randomly chosen locus j (A, say),

and same for B
½p�
i
0
j
0 and B

½m�
i
0
j
0 : One could assume, for example

Fig. 4 Plots of relative

contributions to variance

considering (y-axis) and

ignoring (x-axis) positive LD.

The number of loci is 80; the

distribution of effects is double

exponential. Allele frequencies

are uniform or Beta(c1, c2).

Slope of the regression of kdis

on keq represented as b
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Cov lij; li0j0
� �

¼ Cov ci; ci
0

� �
þ Cov A

½p�
ij ;B

½p�
i
0
j
0

� �

þ Cov A
½p�
ij ;B

½m�
i
0
j
0

� �
þ Cov A

½m�
ij ;B

½p�
i
0
j
0

� �

þ Cov A
½m�
ij ;B

½m�
i
0
j
0

� �
;

with

Cov ci; ci
0

� �
¼ r2

c if i ¼ i
0

qcr
2
c if i 6¼ i

0

(

;

Cov A
½p�
ij ;B

½p�
i
0
j
0

� �
¼

r2
p if i ¼ i

0

qpr
2
p if i 6¼ i

0

(

;

Cov A
½m�
ij ;B

½m�
i
0
j
0

� �
¼

cr2
m if i ¼ i

0

qmr2
m if i 6¼ i

0

8
<

:
;

and

Cov A
½p�
ij ;B

½m�
i
0
j
0

� �
¼ Cov A

½m�
ij ;B

½p�
i
0
j
0

� �
¼ rpm;w if i ¼ i

0

rpm;b if i 6¼ i
0

	
:

where rpm is a covariance and w and b represent ‘‘within’’

and ‘‘between’’ chromosomes. This random effects model

is indexed by four variance components, rc
2 (variance due

to chromosomes); rp
2 (variance among alleles of paternal

origin); rm
2 (variance among alleles of maternal origin) and

rpm, covariance due to one of the alleles being of paternal

(maternal) origin and the other having maternal (paternal)

origin. In addition, three among-chromosome correlations

arise: qc, qp, and qm. The issue of how these parameters

ought to be estimated remains to be addressed. We note

that Barton (2000) did not provide a solution to this

problem, although he casted it in a contingency table

framework (log-linear models).

In practice, how much a given locus contributes to

genetic variability is an important question, one that has

become central in the explosion of genome-wide associa-

tion studies, or GWAS (e.g., Manolio et al. 2009; Stranger

et al. 2011). Zuk et al. (2012) argue that the issue may be

irrelevant with regard to the relevance of a gene in biology

or medicine. As indicated by our study, the answer to our

question is not as straightforward as suggested by quanti-

tative genetics texts such as Falconer and Mackay (1996),

even in a single locus model. Under multi-factorial inher-

itance, additional complications are introduced by the fact

that genotypes at the intervening loci are correlated due to

LD and by how allelic frequencies and effects are

Fig. 5 Plots of relative

contributions to variance

considering (y-axis) and

ignoring (x-axis) negative LD.

The number of loci is 80; the

distribution of effects is double

exponential. Allele frequencies

are uniform or Beta(c1, c2).

Slope of the regression of kdis

on keq represented as b
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distributed over loci (Sabbati and Risch 2002; Zhao et al.

2005). We proposed parameter Cj for measuring direct and

indirect (through LD) contributions of a locus to genetic

variance. It is clear from the form of Cj that how the

contribution to variance evolves over time depends not

only on forces affecting locus j, but on all other loci with

which j is correlated. We note that Cj in (6) can be inferred

from data, e.g., using a ‘‘plug-in’’ method. For example, if

a whole-genome additive Bayesian model is fitted to data,

the a0s can be estimated from the mean of their posterior

distributions, and estimation of allelic frequencies is

straightforward. The main difficulty is that of obtaining

estimates of LD parameters leading to a positive-definite

LD structure. As noted above, the estimates obtained from

pair-wise statistics do not lead to positive-definiteness and

ignore parametric bounds that are hard to establish with

high-dimensional SNP data (Svetlana Miller and Henner

Simianer, personal communication).

Next we discuss the connection between LD and the single-

marker approach typically used in GWAS context and some

related estimation issues. The advent of genome-wide mark-

ers, such as single nucleotide polymorphisms, has produced

thousands of GWAS, where a main objective is that of relating

variation for some disease-connected phenotype to variation

of marker genotypes. A prototypical GWAS uses naive single-

marker regression models, typically linear if the trait is

quantitative, or logistic (or probit) if the response is a discrete

response. Then, using stringent significance levels a few

markers are retained, and sometimes validated in meta-anal-

ysis. Stranger et al. (2011) reviewed many such studies and

discussed difficulties posed when the traits are suspected to be

multi-factorial. This is certainly the case for most economi-

cally important characters in plants and animals, and arguably

for many diseases in livestock and humans. In connection with

a study of rheumatoid arthritis in humans (RA), Stranger et al.

(2011) stated:

‘‘...On the basis of their ORs [odds ratios] and allele

frequencies, we can calculate the proportion of phe-

notypic variance explained in RA for each SNP under

a liability threshold model (Falconer and Mackay

1996), and these can be assumed to sum to the total

percentage of variance explained by validated RA

risk alleles.’’

Fig. 6 Plots of relative

contributions to variance

considering (y-axis) and

ignoring (x-axis) LD. The

number of loci is 80;

distribution of effects is

frequency-dependent (see text),

with normal (top) or double-

exponential (bottom) residuals.

Slope of the regression of kdis

on keq represented as b
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Details on how this was done are lacking in their paper,

but it is not always obvious how variance components

from some generalized linear model (especially if all

effects in the explanatory structure are fixed!) translate

into variance in some observed scale. Examples are pro-

vided by Kathiresan et al. (2008) and Speliotes et al.

(2010), who carried out GWAS studies for cholesterol and

body mass index, respectively, and found that 18 and 32

loci explained 2–4 and 5–6 % of the variation of the

respective traits. These reports are not explicit on how

such estimates were arrived at, but it is probable that this

was done via single marker regression. In such an

approach, the model relates the centered phenotype of

subject i (yi) to the number of copies of a given allele (xi)

at some marker via the relationship yi = xib ? ei, where

b is the allelic substitution effect (corresponding to a in

the notation of this paper), and ei* (0, r2) is a residual

with variance r2; i = 1, 2, ..., N. In an ideal situation

b = a, so that the marker would correspond to a quanti-

tative trait locus (QTL), and suppose this is the only locus

affecting the trait. If the regression is estimated by

ordinary least-squares, the estimate of additive variance

attributed to the locus, assuming that one knows the allelic

frequencies without error, is

bV ¼ 2p 1� pð Þba2:

This provides an upwardly biased estimator of the variance

‘‘due’’ to the locus, since

E bV jx
� �

¼ 2p 1� pð Þ a2 þ r2

P
x2

i

� �
:

Thus, even when the model is ‘‘true’’, the standard

assessment exaggerates the contribution of the locus to

variability, unless the sample is very large.

A related issue in GWAS via single marker least-squares

is the interpretation of the proportion of variance accounted

for by regression, or R2. Typically, this is assessed (assume

all variables have been ‘‘centered’’, so that
P

xi = 0) as

R2 ¼
bb2 P x2

i

� �
P

y2
i

:

In a strict sense, this is the proportion of the total sum of

squares that is accounted for by the fitted line.

Unfortunately, R2 is often interpreted as a ‘‘proportion of

variance’’, but this is not correct as variance is generated

only by random factors in a linear model: fixed effects do

not contribute to variance (Henderson 1953; Searle 1971).

Hence, R2 does not possess an interpretation in a strict

variance components setting. On the other hand

h2 = 2p(1 - p)b2/Var(y) represents the proportion of

phenotypic variance due to the additive effect of the

locus, assuming b = a. This is heritability in a narrow

sense in a model where genotypes are random but their

effects on the trait are fixed, contrary to the regression

model where both the observed genotypes and the effects

are fixed entities. Now, under Hardy-Weinberg equilibrium

assumptions E x2
i

� �
¼ 2p 1� pð Þ (e.g., Gianola et al. 2009),

so that

E R2
� �

¼ Ex E R2jx
� �
 �

� 2p 1� pð Þb2N þ r2

2p 1� pð Þb2N þ Nr2
: ð20Þ

Using the definition of heritability in (20) and taking r2 ¼
1� h2ð ÞVar yð Þ produces

E R2
� �

� N � 1ð Þh2 þ 1

N
� h2 ð21Þ

only if N is large and, accepting that something that is treated

as fixed becomes suddenly random, an approach termed at

least once by Thompson (1979) as ‘‘schizophrenic’’.

QTLs are elusive but an optimistic view is that one or

more markers may be in linkage disequilibrium with a

‘‘causal’’ variant, therefore serving as a proxy for this QTL.

This induces a well-known bias (e.g., Beavis 1998; Xu

2003 and Weir 2008) that is not corrected by an increase in

sample size. To illustrate, suppose that the unobserved

QTL has genotypes (additive effects) QQ að Þ;Qqð0Þ and

qq(- a); then, the regression of the genetic value Gð Þ on

the number of copies of Q is a. We observe a neutral

marker with genotypes MM, Mm and mm, with this marker

being in LD with the QTL. The marker-based regression

uð Þ of the genetic value on the number of copies of M can

be shown to be

u ¼ E GjMMð Þ � E Gjmmð Þ
2

¼ 1� sð Þa;

where

s ¼ Pr QqjMMð Þ þ PrðQqjmmÞ
2

þ Pr qqjMMð Þ þ Pr QQjmmð Þ½ �

The regression u is equal to a only if s is 0, and this would

happen only if the marker is the QTL. Hence, the true

effect of the QTL on the quantitative trait is estimated with

a downward bias. If the estimate of the marker-based

regression is bb; the variance attributed to the locus is now

deemed to be

Vmarked ¼ 2pm 1� pmð Þbb2;

where pm is the frequency of marker allele m. Now, since

E bb
� �

¼ 1� sð Þa

E Vmarkedjpmð Þ ¼ 2pm 1� pmð Þ 1� sð Þ2a2 þ Vbb

� �
;
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where Vbb ¼
P

x2
i

� ��1
r2 is the variance of the least-

squares estimator of b. However, the frequency of allele

m is not the frequency of allele q, that is, pm = p ? d. If

sample size is very large so that Vbb is close to 0,

E Vmarkedjpmð Þ ¼ 2 pþ dð Þ 1� p� dð Þ 1� sð Þ2a2:

It is seen that, even when sample sizes are very large, two

sources of bias remain, one due to the fact that the

regression is estimated downwardly and the second asso-

ciated with the fact that the allelic frequencies at the

marker and QTL loci differ by d.

The problem is much more complicated if many QTLs

affect the trait and if a battery of markers is engaged in the

expedition of searching for a QTL, even under the (naive)

assumption of pure additivity. Suppose that one fits p

markers and that sample size Nð Þ is large enough to pro-

duce unique least-squares estimates of each regression on a

marker. The regression model fitted is

y ¼ Xbþ e ¼ x1 x2 : : : xp½ �

b1

b2

:
:
:

bp

2

6666664

3

7777775

þ e;

where xi is an N 9 1 column vector linking the effect of

marker i to the phenotype. Assume that there are two

epistatic QTL, so that the ‘‘true’’ model for the trait is

y ¼ q1 q2 q12½ �
a1

a2

a12

2

4

3

5þ e ¼ Qaþ e;

where q1; q2 and q12 are unknown incidence vectors

linking the additive effects a1, a2 and the

additive 9 additive effect a12 to the phenotypes. If

marker effects are estimated by ordinary least-squares,

the expected value of the estimator is

E bb
� �

¼

x01x1 x01x2 : : : x01xp

: x02x2 : : : x02xp

: : : : : :

: : : : : :

: : : : : :

symmetric : : : : x0pxp

2

666666664

3

777777775

�1

�

x01 q1a1 þ q2a2 þ q12a12ð Þ
x02 q1a1 þ q2a2 þ q12a12ð Þ

:

:

:

x0p q1a1 þ q2a2 þ q12a12ð Þ

2

666666664

3

777777775

:

It is seen that the bias of the estimator is extraordinarily

complex. It is affected by all LD relationships among

markers (note that x0ixj is the sum over individuals of

products of genotype codes for markers i and j, interpretable

as a sample covariance if markers have been centered and

standardized), and the bias is conveyed by the inverse

matrix in the preceding expression. The bias of the

estimator is also affected by all LD relationships between

all markers and all unknown QTLs (and by their joint

distribution of QTL genotypes over loci represented by the

Hadamard vector product q12) affecting the quantitative

trait, as well as by their ‘‘true’’ effects (a0s) on the trait. For

the special case of single marker regression, the expected

value of the estimator reduces to

E ebi

� �
¼ x0i q1a1 þ q2a2 þ q12a12ð Þ

x0ixi
;

and note that as sample sizes goes to 1; the probability

limit of ebi is

plimN!1
x0i q1a1 þ q2a2 þ q12a12ð Þ

x0ixi

¼ di;1a1 þ di;2a2 þ di;12a12;

where, for example, di,1 is the regression of marker i

genotype codes on QTL 1 genotype codes. This shows that

even when the marker is the QTL di;1 ¼ 1
� �

; the regression

remains biased unless all other d-coefficients are zero.

It seems that all energies in GWAS seem to center on

the problem of multiple testing, as opposed to criticism of

what is clearly an inadequate model for analysis of com-

plex traits. What is the effect of the bias discussed above on

the attribution of variance stemming from a standard

GWAS? The expected value of the estimator of residual

variance from single marker regression (assuming centered

data) is

E er2
e

� �
¼

E y0yð Þ � x0ixiE eb2
i

� �

N � 1
;

where

E y0yð Þ ¼ a0Q0Qaþ Nr2
e ;

and

E eb2
i

� �
¼ x0iQa

x0ixi

� 
2

þVar ebi

� �
¼ a0Q0xix

0
ia

x0ixið Þ2
þ r2

e

x0ixi
:

Hence,

E er2
e

� �
¼

a0Q0Qaþ Nr2
e �

a0Q0xix
0
iQa

x0ixi
þ r2

e

h i

N � 1

¼ r2
e þ

a0Q0 In � xix
0
i

x0ixi

� �
Qa

N � 1
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which is biased and inconsistent, because the bias (second

term in the expression above) cannot be shown to vanish

with increased N since In � xix
0
i

x0ixi
grows with N as well. Now,

the t2 or F - statistic used for computing p - values for

testing the hypothesis H0:bi = 0 versus the alternative is

based on

F ¼ t2 ¼
eb2

i

dVar ebi

� � ;

where dVar ebi

� �
¼ er

2
e

x0ixi
is the estimate of the variance of the

regression coefficient. Then, approximately

E Fð Þ �
r2

e þ
a0Q0xix

0
iQa

x0ixið Þ

r2
e þ

a0Q0 In�
xix0

i
x0

i
xi

� �
Qa

N�1

;

which is not equal to 1 under the null hypothesis bi = 0

unless the marker is the QTL, and provided that there are

no other QTLs or epistatic effects involving the trait in

question. It follows that F (or t) cannot have a central

distribution and that p-values in GWAS are questionable.

This problem cannot be solved by any of the multiple-test

corrections (such as Bonferroni) done in standard GWAS.

Finally, the variance attributed to a locus in a standard

GWAS is assessed (assuming that the data have been

centered) as

R2 ¼ 1� y0y� x0ixi
eb2

i

y0y
;

so using the preceding developments one arrives at the

approximate result

E R2
� �

� 1�
N � 1ð Þr2

e þ a0Q0Qa� a0Q0xix
0
iQa

x0ixi

Nr2
e þ a0Q0Qa

� a0Q0xix
0
iQa

Nr2
e þ a0Q0Qa

� �
x0ixi

; for large N:

ð22Þ

Clearly, this is difficult to interpret.

In summary, the partition of variance into locus-specific

contributions is not straightforward when linkage disequi-

librium exists. Knowledge of the distribution of allelic

effects and of frequencies is required, in addition to the

entire linkage disequilibrium structure, to answer the

question properly. Unfortunately, a great difficulty is that

of obtaining a sensible estimate of a multi-dimensional LD

structure. On the other hand, if the distribution of additive

effects is symmetric and independent of that of allelic

frequencies, assuming LE mat provide a reasonable

approximation to the variance partition. It may be possible

to refine the variance partition further by introducing

models for the LD structure. For instance, the ‘‘Bulmer’’

effect (Bulmer 1971) produces within-chromosome gradi-

ents of negative LD, and there is empirical evidence from

cattle (Henner Simianer and Saber Qanbari, personal

communication) that LD tends to be negative within

chromosomes, but positive when the pairs of loci involve

different chromosomes. However, this problem is brought

up here only for the purpose of suggesting that research

may be warranted in this area. We conclude that attribu-

tions to variance contributed by a single QTL from a

standard GWAS analysis may be misleading, conceptually

and statistically, when the trait is complex and affected by

many genes. Yet another factor to consider in the ‘‘missing

heritability’’ saga?.
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